Pseudoflavonifractor is a genus of anaerobic bacteria found in the gastrointestinal tract of humans. It is closely related to Flavonifractor and also has the unique ability to metabolise flavonoids, a type of natural plant compounds known for their antioxidant and anti-inflammatory properties, contributing to the balance of the complex microbial community that influences host physiology, metabolism, and immune function. Pseudoflavonifractor increases the bioavailability of flavonoids and transforms these compounds, playing a role in unlocking their therapeutic potential for the host. Furthermore, some species within this genus are known to produce short-chain fatty acids like butyrate, which are crucial for maintaining gut integrity and overall health.1Carlier JP, Bedora-Faure M, K’ouas G, Alauzet C, Mory F. Proposal to unify Clostridium orbiscindens Winter et al. 1991 and Eubacterium plautii (Séguin 1928) Hofstad and Aasjord 1982, with description of Flavonifractor plautii gen. nov., comb. nov., and reassignment of Bacteroides capillosus to Pseudoflavonifractor capillosus gen. nov., comb. nov. Int J Syst Evol Microbiol. 2010 Mar;60(Pt 3):585-590. doi: 10.1099/ijs.0.016725-0.
Roles of Pseudoflavonifractor species in human health
- Metabolism of flavonoids: Pseudoflavonifractor species can metabolise certain flavonoids, which are compounds found in plants that have antioxidant and anti-inflammatory properties.2Ivey KL, Chan AT, Izard J, Cassidy A, Rogers GB, Rimm EB. Role of Dietary Flavonoid Compounds in Driving Patterns of Microbial Community Assembly. mBio. 2019;10(5):e01205-19. Published 2019 Sep 24. doi: 10.1128/mBio.01205-19.3Yang G, Hong S, Yang P, et al. Discovery of an ene-reductase for initiating flavone and flavonol catabolism in gut bacteria. Nat Commun. 2021;12(1):790. Published 2021 Feb 4. doi: 10.1038/s41467-021-20974-2.4Thomsen M, Tuukkanen A, Dickerhoff J, et al. Structure and catalytic mechanism of the evolutionarily unique bacterial chalcone isomerase. Acta Crystallogr D Biol Crystallogr. 2015;71(Pt 4):907-917. doi: 10.1107/S1399004715001935.
- Butyrate production: Pseudoflavonifractor species contribute to the production of the short-chain fatty acid butyrate, which plays a key role in maintaining the integrity of the gut lining and contributing to health both within and beyond the gut.5Hodgkinson K, El Abbar F, Dobranowski P, Manoogian J, Butcher J, Figeys D, Mack D, Stintzi A. Butyrate’s role in human health and the current progress towards its clinical application to treat gastrointestinal disease. Clin Nutr. 2023 Feb;42(2):61-75. doi: 10.1016/j.clnu.2022.10.024.6Cheng X, Zhou T, He Y, Xie Y, Xu Y, Huang W. The role and mechanism of butyrate in the prevention and treatment of diabetic kidney disease. Front Microbiol. 2022 Aug 9;13:961536. doi: 10.3389/fmicb.2022.961536.7Bourassa MW, Alim I, Bultman SJ, Ratan RR. Butyrate, neuroepigenetics and the gut microbiome: Can a high fiber diet improve brain health? Neurosci Lett. 2016 Jun 20;625:56-63. doi: 10.1016/j.neulet.2016.02.009.8Siddiqui MT, Cresci GAM. The Immunomodulatory Functions of Butyrate. J Inflamm Res. 2021 Nov 18;14:6025-6041. doi: 10.2147/JIR.S300989. People living with certain conditions, e.g. Parkinson’s9Nuzum ND, Szymlek-Gay EA, Loke S, Dawson SL, Teo WP, Hendy AM, Loughman A, Macpherson H. Differences in the gut microbiome across typical ageing and in Parkinson’s disease. Neuropharmacology. 2023 Sep 1;235:109566. doi: 10.1016/j.neuropharm.2023.109566.
- Metabolic support: Pseudoflavonifractor species are less abundant in the gut of people living with either prediabetes or type-2 diabetes (T2D) compared with healthy controls.10Wu H, Tremaroli V, Schmidt C, Lundqvist A, Olsson LM, Krämer M, Gummesson A, Perkins R, Bergström G, Bäckhed F. The Gut Microbiota in Prediabetes and Diabetes: A Population-Based Cross-Sectional Study. Cell Metab. 2020 Sep 1;32(3):379-390.e3. doi: 10.1016/j.cmet.2020.06.011.11Mishra SP, Jain S, Taraphder S, Yadav H. New Horizons in Microbiota and Metabolic Health Research. J Clin Endocrinol Metab. 2021 Jan 23;106(2):e1052-e1059. doi: 10.1210/clinem/dgaa769.
Best sources of Pseudoflavonifractor
Pseudoflavonifractor species naturally inhabit the human gut and can be promoted by a fibre-rich diet. No food sources of Flavonifractor are available at present. Specialised Flavonifractor probiotic supplements are not yet available.
What foods can Pseudoflavonifractor feed on?
Pseudoflavonifractor species appear to thrive on a fibre-rich, polyphenol-rich diet that features sources of soy isoflavones like soy milk, tofu, soybeans, and tempeh.12Gómez-Zorita S, González-Arceo M, Fernández-Quintela A, Eseberri I, Trepiana J, Portillo MP. Scientific Evidence Supporting the Beneficial Effects of Isoflavones on Human Health. Nutrients. 2020 Dec 17;12(12):3853. doi: 10.3390/nu12123853.13Guadamuro L, Azcárate-Peril MA, Tojo R, Mayo B, Delgado S. Impact of Dietary Isoflavone Supplementation on the Fecal Microbiota and Its Metabolites in Postmenopausal Women. Int J Environ Res Public Health. 2021 Jul 27;18(15):7939. doi: 10.3390/ijerph18157939. and lower in salt.14Rinninella E, Cintoni M, Raoul P, Lopetuso LR, Scaldaferri F, Pulcini G, Miggiano GAD, Gasbarrini A, Mele MC. Food Components and Dietary Habits: Keys for a Healthy Gut Microbiota Composition. Nutrients. 2019 Oct 7;11(10):2393. doi: 10.3390/nu11102393.
Where to find Pseudoflavonifractor in the Chuckling Goat Gut Microbiome Test
You will find your Pseudoflavonifractor score in the “Butyrate” section of the “Postbiotics” report in your Chuckling Goat Gut Microbiome Test results.
Synonyms: Pseudoflavonifractor species don’t have any well-recognised synonyms, but they are often categorised along with Flavonifractor, a closely related bacterium when discussed in the context of gut health.
Important disclaimer
The Chuckling Goat Gut Microbiome Handbook is an educational resource built to translate complex science into plain English. The information provided on this page is not intended to be a substitute for professional medical advice, diagnosis, or treatment. Always seek the advice of your GP or other qualified health provider with any questions you may have regarding a medical condition. Always check with your GP for interactions.
References
- 1Carlier JP, Bedora-Faure M, K’ouas G, Alauzet C, Mory F. Proposal to unify Clostridium orbiscindens Winter et al. 1991 and Eubacterium plautii (Séguin 1928) Hofstad and Aasjord 1982, with description of Flavonifractor plautii gen. nov., comb. nov., and reassignment of Bacteroides capillosus to Pseudoflavonifractor capillosus gen. nov., comb. nov. Int J Syst Evol Microbiol. 2010 Mar;60(Pt 3):585-590. doi: 10.1099/ijs.0.016725-0.
- 2Ivey KL, Chan AT, Izard J, Cassidy A, Rogers GB, Rimm EB. Role of Dietary Flavonoid Compounds in Driving Patterns of Microbial Community Assembly. mBio. 2019;10(5):e01205-19. Published 2019 Sep 24. doi: 10.1128/mBio.01205-19.
- 3Yang G, Hong S, Yang P, et al. Discovery of an ene-reductase for initiating flavone and flavonol catabolism in gut bacteria. Nat Commun. 2021;12(1):790. Published 2021 Feb 4. doi: 10.1038/s41467-021-20974-2.
- 4Thomsen M, Tuukkanen A, Dickerhoff J, et al. Structure and catalytic mechanism of the evolutionarily unique bacterial chalcone isomerase. Acta Crystallogr D Biol Crystallogr. 2015;71(Pt 4):907-917. doi: 10.1107/S1399004715001935.
- 5Hodgkinson K, El Abbar F, Dobranowski P, Manoogian J, Butcher J, Figeys D, Mack D, Stintzi A. Butyrate’s role in human health and the current progress towards its clinical application to treat gastrointestinal disease. Clin Nutr. 2023 Feb;42(2):61-75. doi: 10.1016/j.clnu.2022.10.024.
- 6Cheng X, Zhou T, He Y, Xie Y, Xu Y, Huang W. The role and mechanism of butyrate in the prevention and treatment of diabetic kidney disease. Front Microbiol. 2022 Aug 9;13:961536. doi: 10.3389/fmicb.2022.961536.
- 7Bourassa MW, Alim I, Bultman SJ, Ratan RR. Butyrate, neuroepigenetics and the gut microbiome: Can a high fiber diet improve brain health? Neurosci Lett. 2016 Jun 20;625:56-63. doi: 10.1016/j.neulet.2016.02.009.
- 8Siddiqui MT, Cresci GAM. The Immunomodulatory Functions of Butyrate. J Inflamm Res. 2021 Nov 18;14:6025-6041. doi: 10.2147/JIR.S300989.
- 9Nuzum ND, Szymlek-Gay EA, Loke S, Dawson SL, Teo WP, Hendy AM, Loughman A, Macpherson H. Differences in the gut microbiome across typical ageing and in Parkinson’s disease. Neuropharmacology. 2023 Sep 1;235:109566. doi: 10.1016/j.neuropharm.2023.109566.
- 10Wu H, Tremaroli V, Schmidt C, Lundqvist A, Olsson LM, Krämer M, Gummesson A, Perkins R, Bergström G, Bäckhed F. The Gut Microbiota in Prediabetes and Diabetes: A Population-Based Cross-Sectional Study. Cell Metab. 2020 Sep 1;32(3):379-390.e3. doi: 10.1016/j.cmet.2020.06.011.
- 11Mishra SP, Jain S, Taraphder S, Yadav H. New Horizons in Microbiota and Metabolic Health Research. J Clin Endocrinol Metab. 2021 Jan 23;106(2):e1052-e1059. doi: 10.1210/clinem/dgaa769.
- 12Gómez-Zorita S, González-Arceo M, Fernández-Quintela A, Eseberri I, Trepiana J, Portillo MP. Scientific Evidence Supporting the Beneficial Effects of Isoflavones on Human Health. Nutrients. 2020 Dec 17;12(12):3853. doi: 10.3390/nu12123853.
- 13Guadamuro L, Azcárate-Peril MA, Tojo R, Mayo B, Delgado S. Impact of Dietary Isoflavone Supplementation on the Fecal Microbiota and Its Metabolites in Postmenopausal Women. Int J Environ Res Public Health. 2021 Jul 27;18(15):7939. doi: 10.3390/ijerph18157939.
- 14Rinninella E, Cintoni M, Raoul P, Lopetuso LR, Scaldaferri F, Pulcini G, Miggiano GAD, Gasbarrini A, Mele MC. Food Components and Dietary Habits: Keys for a Healthy Gut Microbiota Composition. Nutrients. 2019 Oct 7;11(10):2393. doi: 10.3390/nu11102393.